Логические нейронные сети


Пример модели транспортного маршрутизатора из центрального пункта отправления


Рассмотрим пример транспортного маршрутизатора, планирующего движение из одного, центрального пункта к периферийным пунктам со специальной топологией связей. Транспортная сеть представлена на рис. 14.2, где все пункты заданы своими координатами (х, у) в системе координат, связанной с центром.


Рис. 14.2.  Транспортная сеть

По величине и знаку разности координат пункта назначения и исходного или промежуточного пункта нахождения с помощью простейшей однослойной нейросети (рис. 14.3) может быть найден пункт смещения, т.е. тот пункт, в который следует переместиться для дальнейшего следования. Целесообразно использовать рассмотренную ранее передаточную функцию, положив все веса равными единице, а пороги - равными двум.


Рис. 14.3.  Транспортная нейросеть

Как рассматривалось выше, нейросеть отображает рекомендуемые смещения для всех возможных ситуаций, складывающихся на основе текущего нахождения объекта и соотношения между его координатами и координатами пункта назначения.

Если координаты найденного пункта смещения совпадают с координатами пункта назначения, маршрут реализован.

В противном случае отыскиваются разности координат пункта назначения и найденного пункта смещения. Они определяют единичное возбуждение соответствующих рецепторов входного слоя. Так же возбуждается рецептор, соответствующий найденному пункту смещения. Эти три возбужденных рецептора вновь определяют новый пункт смещения.

Так продолжается до совпадения координат пункта смещения с координатами пункта назначения. В данном примере потребуется сделать не более двух шагов.

Например, при движении из пункта 0 по адресу пункта 6 с координатами (-50, 150) оказывается, что ?x < 0, ?y

0. Тогда нейрону 1 сообщается значение возбуждения, равное 1. Такое же значение сообщается нейрону 4, а также нейрону 5, соответствующему центральному пункту. Тогда V27 = 1, V28 = ... V46 = 0. То есть найден промежуточный пункт 1. Тогда возбуждение нейрона 6 полагается равным единице и устанавливается, что относительно пункта 1 координаты пункта назначения определяют неравенства ?х
0, ?у
0.
Значит, следует сообщить единичное возбуждение нейронам 2 и 4. Возбуждение всех других рецепторов полагается нулевым. При расчете передаточной функции для всех нейронов выходного слоя выдается рекомендация следования в пункт 6, т.к. единичное возбуждение приобретает нейрон 32. Маршрут составлен: 0
1
6.

Нейросеть, представленная на рис. 14.3, предполагает одностороннее перемещение - от центра к периферии. Поэтому конечные пункты оказались "зависшими", не влияющими на дальнейшее смещение. Однако легко развить эту нейросеть (нецелесообразно усложнять рисунок), предположив возможность возвращения в центральный пункт, или движения через центральный пункт, если задан маршрут из пункта отправления одного сектора в пункт назначения другого сектора. Внутри сектора движение может осуществляться через его локальный центральный пункт также на основе анализа указанной выше разности координат.

Таким образом, моделирование сложной транспортной сети любой природы с помощью логической нейронной сети оказывается исключительно простым и универсальным.



Значит, следует сообщить единичное возбуждение нейронам 2 и 4. Возбуждение всех других рецепторов полагается нулевым. При расчете передаточной функции для всех нейронов выходного слоя выдается рекомендация следования в пункт 6, т.к. единичное возбуждение приобретает нейрон 32. Маршрут составлен: 0
1
6.

Нейросеть, представленная на рис. 14.3, предполагает одностороннее перемещение - от центра к периферии. Поэтому конечные пункты оказались "зависшими", не влияющими на дальнейшее смещение. Однако легко развить эту нейросеть (нецелесообразно усложнять рисунок), предположив возможность возвращения в центральный пункт, или движения через центральный пункт, если задан маршрут из пункта отправления одного сектора в пункт назначения другого сектора. Внутри сектора движение может осуществляться через его локальный центральный пункт также на основе анализа указанной выше разности координат.

Таким образом, моделирование сложной транспортной сети любой природы с помощью логической нейронной сети оказывается исключительно простым и универсальным.


Содержание раздела