Нейроинформатика


Нейроинформатика


Та часть работ, которая связана с разработкой устройств переработки информации на основе принципов работы естественных нейронных систем относится к области нейроинформатики или нейровычислений (нейрокомпьютинга). Термины эти появились недавно - в середине 80-х годов. В то же время сравнение электронного и биологического мозга ведется постоянно на протяжении всей истории существования вычислительной техники. Знаменитая книга Н.Винера "Кибернетика", ознаменовавшая рождение этой науки в 1948 г., имеет подзаголовок "Управление в живых системах, технике и обществе".

Новый мощный импульс идея нейро-бионики, т.е. создание технических средств на нейро-принципах, получила в 1982-1984 гг. В это время размеры элементарных деталей вычислительных устройств сравнялось с размерами элементарных "преобразователей информации" в нервной системе. Быстродействие электронных элементов в миллионы раз больше, а эффективность решения задач , особенно связанных с ориентировкой и принятием решений в сложной естественной среде, у биологических систем выше.

Возникло подозрение, что живые организмы выигрывают за счет своих механизмов процессов переработки информации. Резко активировались фундаментальные и прикладные исследования в этой области. Сейчас нейроинформатика как наука уже обладает собственным аппаратом и предметом исследований.

Суть всех подходов нейроинформатики: разработка методов создания (синтеза) нейронных схем, решающих те или иные задачи. Нейрон при этом выглядит как устройство очень простое: нечто вроде усилителя с большим числом входов и одним выходом. Различие между подходами и методами - в деталях представлений о работе нейрона, и, конечно, в представлениях о работе связей. Собственно, как уже отмечалось выше, устройства нейроинформатики представляют собой связевые системы. В отличие от цифровых микропроцессорных систем, представляющих собой сложные комбинации процессорных и запоминающих блоков, нейропроцессоры содержат память, распределенную в связях между очень простыми процессорами.
Тем самым основная нагрузка на выполнение конкретных функций процессорами ложится на архитектуру системы, детали которой в свою очередь определяются межнейронными связями.

Значительную роль в общем подъеме интереса к нейропроблемам сыграла теория, предложенная Джоном Хопфилдом в 1982 г. Она буквально заворожила на продолжительное время физиков-теоретиков. И хотя с точки зрения нейро- теоретиков и технологов эта теория мало что дала, возбужденные ей аналогии и каскады головокружительных теоретических вычислений доставили немало эстетических радостей адептам науки. Кроме того, теория эта представляет хорошее поле для освоения понятий и упражнений, помогающих образовывать и развивать аналитические и моделирующие способности студентов.

Не углубляясь в технические детали, скажу, что благодаря работам Хопфилда возникло мнение, что наряду с ферромагнетиками и антиферромагнетиками возможны нейромагнетики, т.е. теоретические конструкции того же класса, что и первые два, но разительно от них отличающиеся и описывающие только запоминание дискретных образов (или так называемых паттернов информации) в нейронных сетях.

Другой важный класс нейронных систем введен в рассмотрение финном Тейво Кохоненом. У этого класса красивое название: самоорганизующиеся отображения состояний, сохраняющие топологию сенсорного пространства. теория Кохонена активно использует теорию адаптивных систем, развивавшуюся на протяжении многих лет академиком РАН Я.З.Цыпкиным.

Весьма популярна сейчас во всем мире оценка возможностей обучающихся систем, в частности, нейронных сетей (теория размерности Вапника-Червоненкиса). Ее основа была создана еще в 1966 г. советскими исследователями А.Я.Червонекисом и В.Н.Вапником.

Еще один класс нейроподобных моделей представляют сети с обратным распространением ошибок. Метод уходит корнями в довольно отдаленное прошлое. В развитии его современных модификаций ведущую роль сыграли французский исследователь ле Кун и проф. А.Н.Горбань из Красноярска.

Нейроинформатика стала внедряться в окружающую нас действительность в виде нейропроцессоров и нейрокомпьютеров.Перейдем к ним.


Содержание раздела