Нейроинформатика


Некорректность обратной задачи


Отличительная особенность обратных и комбинированных задач состоит в том, что они обычно являются некорректно поставленными [4.10], и поэтому требуют специализированных методов поиска приближенных решений. Согласно Ж.Адамару, для корректности постановки задачи необходимо:

  • существование решения при всех допустимых исходных данных;
  • единственность данного решения;
  • устойчивость решения к изменениям (малым) исходных данных.

Рассмотрим характер возможных нарушений данных условий при решении модельной обратной задачи.

Пусть имеется три исследуемых систем, описываемых кусочно-линейными функциями одной переменной y=F(x) на отрезке [0..1]. Системы отличаются друг от друга величиной скачка h системной функции (см рис. 4.2). Прямая задача состоит в построении приближения G к функции F, с использованием пар значений {xi, yi=s(xi)}, где xi - конечный набор Na случайных равномерно распределенных на [0..1] точек. Обратная задача заключается в нахождении функции, аппроксимирующей соотношения xi(yi). В зависимости от величины скачка моделируемой функции можно выделить три варианта.

  1. Система A (h=0). Модель является линейной: y=x. Для прямой задачи легко получить исчезающую ошибку обучения
    , и малую1) ошибку обобщения EG. Для обратной задачи получаются такие же результаты, так она при точных значения {xi, yi} не содержит некорректности. Задачи с решениями, корректными на всей области определения и множестве значений, будем называть безусловно корректными. Корректность постановки обратной задачи для системы А определяется существованием однозначной и непрерывной функции F-1.


    Рис. 4.2.  Модельные системы с различными величинами скачка системной функции.

  2. Система B (0<h<1). Прямая задача в этом случае также хорошо определена, и при использовании достаточно богатого множества базисных функций можно произвольно уменьшить ошибку обучения (
    ) при хорошем обобщении. Обратная задача характеризуется наличием на множестве значений областей с однозначной ( y > 0.5+0.5h; y < 0.5-0.5h) и неоднозначной (
    ) обратной функцией.
    В областях однозначности функции могут быть получены произвольно точные результаты для обратной задачи. Однако в отрезке нарушения однозначности ошибка обучения (и ошибка обобщения) останется конечной, поскольку противоречие в данных, полученных из разных ветвей обратной функции, не устранимо. Значение ошибки обобщения пропорционально длине отрезка неоднозначности h. Такие задачи, корректное (единственное и устойчивое) решение которых может быть получено только для некоторой подобласти множества значений, будем называть условно (или частично ) корректными2).
  3. Система C (h=1). Прямая задача по-прежнему корректно поставлена, требуемое обучение и обобщение может быть достигнуто (
    ). Однако ситуация качественно меняется для случая обратной задачи. Обратная функция двузначна на всем множестве значений, информация о ее значении минимальна. Обратная задача полностью некорректно поставлена.


Что общего между всеми этими примерами? В каждом из них ошибка обобщения при решении обратной задачи не может быть меньше значения, определяемого размером области неоднозначности h, который, таким образом, может рассматриваться, как мера некорректности задачи. В случае, если для решения обратной задачи используется метод со стабилизирующими свойствами (например, с малым числом свободных параметров по сравнению с числом обучающих примеров), будет получено гладкое решение с ненулевой ошибкой обучения, определяемой параметром h.

Заметим, что прямая задача является безусловно корректной только при полном отсутствии шума в обучающих данных. При наличии случайных компонент в значениях X имеется целое "облако" решений прямой задачи, причем размер облака пропорционален величине шума. Таким образом, нарушается единственность решения прямой задачи, и она становится некорректно поставленной.


Содержание раздела