Постановка задачи
Постановка задачи всегда является прерогативой предметных специалистов.
Прежде всего, необходимо определить, что представляет собой акт работы экспертной системы, начинающийся со ввода данных (условия задачи) пользователем и заканчивающийся выдачей ответа. Например, в медицинских диагностических задачах акт работы системы чаще всего начинается с введения в ЭВМ данных о пациенте (симптоматика, анамнез, результаты анализов и т.д.) и заканчивается выдачей возможного диагноза и/или прогноза. Часто одна задача компонуется из нескольких подзадач. В этом случае каждой подзадаче может соответствовать отдельный акт работы системы, хотя для пользователя это может быть совершенно незаметным. Например, по данным о пациенте требуется установить диагноз и назначить соответствующее лечение. Установление диагноза на базе введенных параметров - первая подзадача, назначение терапии - вторая, при этом для назначения терапии нужны не только исходные данные, но и результат решения предыдущей задачи - диагноз.
Полезно сразу же для каждой подзадачи определить ее тип (классификация, предикция, векторная предикция).
Обычно каждая подзадача решается одной нейросетью или несколькими нейросетями, объединенными в один функциональный блок (малые эксперты [5.46]). При этом введенные данные подаются последовательно на каждую нейросеть блока и каждая нейросеть выдает ответ. Ответы могут различаться, поэтому в такой ситуации требуется разработать способ получения единственного ответа. Это можно сделать двумя способами:
- Путем логических правил. Например, если 5 нейросетей выдали ответ "здоров", а 2 - "болен", то общее решение - "здоров", т.к. за него проголосовало большее число нейросетей-экспертов. Если не удается формализовать правило, можно принимать решение на основании степеней уверенности каждой из сетей.
- Путем надстройки над блоком малых экспертов нейросети-"супервизора", которая обучена принимать решение по результатам работы этих малых экспертов.
После определения акта работы системы и разбивки (если требуется) задачи на подзадачи следует разработка схемы обучающих примеров для каждой из подзадач.
Схема примера включает список входных и выходных параметров для данной подзадачи.
Определение списка входных данных - квалифицированная работа предметного специалиста, требующая знания изучаемой области и ориентировочной важности тех или иных параметров, необходимых для получения ответа. Желательно в начале работы над проектом задать некоторую избыточность списка входных данных. В дальнейшем "лишние" параметры можно будет легко исключить из работы системы, добавить же новые несколько труднее, прежде всего потому, что потребуется вновь обращаться за этими параметрами к источникам данных.
Рис. 5.5. Схема движения информации для экспертной cистемы с 5 нейросетями-экспертами, решающими одну и ту же задачу и логическим блоком, осуществляющим голосование для выдачи заключительного решения
Далее желательно составить наглядную схему движения информации в экспертной системе начиная со ввода данных из внешнего мира и заканчивая выводом ответа (ответов) пользователю. Пример такой схемы приведен на рисунке 5.5.
Необходимо определить ориентировочные размеры обучающих выборок. Так, в классификационных задачах (подзадачах) желательно, чтобы каждый класс ответа был представлен достаточным количеством примеров. Необязательно, но желательно, чтобы количества примеров каждого класса не различались слишком сильно (более, чем на порядок).
Предварительное обучение и тестирование нейросетей можно проводить на небольшом количестве примеров с целью определения дальнейшей стратегии и тактики обучения, а также уточнения общего размера обучающей выборки.